
Lessons 1&2 
 

Introduction 

Surface science = analog to bulk solid state science.  In some cases I will give “refresher” 

lectures for those not familiar with Solid State Physics. 

Textbooks and notes:  I will provide notes on each lesson.  You can download them from 

my web page (free).     

Other books: 

Physics at Surfaces     Zangwill (Cambridge) 

Introduction to Solid State Physics  Kittel 

Solid State Physics    Ashcroft and Mermin 

Surface Science    K. Oura, V.G. Liffshits et al. Springer 

Physical Chemistry of Surfaces  Adamson (Wiley) 

Intermolecular and Surface Forces  Israelachvili (Academic Press) 

Volume 5 of Landau and Lifshitz 

Surface Forces      B.V. Derjaguin, N.V. Churaev and V.M. Muller.  Plenum 

Statistical Physics of Crystal Growth  Yukio Saito, World Scientific 

….. more will be added ……………. 

 

Why and where surfaces are important: 

- Frontier of the material, broken chemical bonds or fewer molecules exerting 

attraction (van der Waals)  this gives rise to an energy per unit area 

- Bulk termination structure expected to be different from that expected from the 

bulk structure 

- Semiconductor surfaces give rise to special electronic effects 

- Heterogeneous catalysis is a surface enhanced chemistry 

- Environmental phenomena: rock weathering, atmospheric phenomena 

- Crystal growth  

- Nanoscience: Atoms at the surface can be a large % of total. 



Thermodynamics review:  

System variables: N, V, p, T, S, μ 

• First principle: WUQ δδδ +=   (δ symbols meaning non-exact differentials), Q heat, 

W mechanical or other work. 

• Second principle: 
T
QS δδ =  (for reversible processes; > for irreversible ones) 

• Together they lead to the fundamental relation:   WVpUST δδδδ ++=  

• Euler equation: From the linearity of U on extensive variables U = μN - pV + TS,  

where μ = ∂U/∂N ; p = - ∂U/∂V; and T = ∂U/∂S, are the three conjugate variables of 

N, V and S, the normal variables of the energy, as a thermodynamic potential. 

• Gibbs-Duheim equation: The differential of Euler eq. together with the fundamental 

eq. (1), leads to:  SdT –Vdp +Ndμ = 0  

 

Potentials: 

Energy U(S,V,Nj):   dU = TdS – pdV + μjdNj     U = TS – pV + μjNj 

Helmholtz free energy F(T,V, Nj): dF = -SdT – pdV + μjdNj       F = U –TS = μjNj - pV 

Gibbs free energy G(T, p, Nj): dG = - SdT + Vdp + μjdNj    G = U –TS + pV = μjNj 

Omega potential Ω(T, V, μj):  dΩ = -SdT – pdV -Njdμj          Ω = F –G =  -pV  

The term –pV represents the “mechanical energy”.  If other forms of mechanical or 

electrical energy exist they should be added.  For example the surface tension γ 

γ = δΩ/δA or = δF/δA depending on the variables that stay constant in the system 

 

Surface tension 

 Lets consider two phases 1 and 2, separated by a surface of area A, in equilibrium. 

Since μ and T are constant we use the Omega potential: 

Ω = -p1V1 –p2V2 + γA 

Where γ is the energy to create a unit of surface.  Since V1 + V2 = 

constant, dΩ = -(p1 –p2)dV1 + γdA  = 0, in equilibrium. For a 

planar surface this means p1 = p2, since dA = 0.   

For a spherical droplet or bubble, V1 = 4/3πr3, and A = 4πr2, we 



obtain:     p1 –p2 = 2γ/r 

 

For bubbles r < 0, and for a liquid filament (figure on the 

left), r1 > 0, and r2 <0 

 

p1 –p2 = γ/r1 - γ/r2 

 

Exercise 1: Calculate the pressure due to capillary condensation at the apex of a sphere 

(or AFM tip): 
r1 

2r2 
 

 

 

Exercise 2: Find the geometrical relation between γ and the increase in pressure in the 

concave side of an interface.  
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We can explain Δp as the result of a tangential pull from γ (= force per unit length, left 

figure) on any line segment on the surface.  For a “cut” perpendicular to a principal 

radius of curvature r, this produces a force towards the center f ~ γ.L.θ = γ. L.δs/r.   The 

increase in pressure is f/(δs.L) =  γ/r.  The same reasoning for the pull on a line segment 

on the other principal curvature, r’, will add another term γ/r’. 

 

Equilibrium gas pressure 

The pressures p1 and p2 near a curved surface are therefore different from the 

pressure of the gas over a flat surface, which defines the equilibrium vapor pressure p0.  

Lets calculate the difference between p1 and p2 and p0. 



We start with μ1(p1,T) = μ2(p2,T) and the relations μ(p,T) = μ(po,T) + kTlog(p/p0).  

For the vapor in equilibrium with the flat surface we also have μ1(p0,T) = μ2(p0,T).  

Combining we get: 

μ1(p1,T) - μ1(p0,T) = μ2(p2,T) - μ2(p0,T)  

and for small differences in pressure, by series expansion and using the equality:  v = -

∂μ/∂p, we get: 

v1δp1 = v2δp2, 

where δpj ≡ pj –p0. Since δp1 - δp2 = 2γ/r, substituting we obtain:   
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Using the perfect gas equation: pV = NkT, we have v2 = kT/p2 ~ kT/p0, so:  

kTr
pv

p liq
vap

02γ
δ =   

which gives the increase in vapor pressure over a spherical droplet, relative to that on the 

flat surface.  Therefore, if there is a collection of droplets, there can be no equilibrium. 

The big ones will grow at the expense of the small ones, since these would require higher 

vapor pressure around them. This is the so called Ostwald ripening. 

For very small droplets, we cannot use the approximation v1δp1 = v2δp2, since δp2 

can become quite large. We then need to use the unexpanded form of μ(p,T) = μ(po,T) + 

kTlog(p/p0) for the gas phase.  With this we get: 
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Exercise 3: Find pvapor for water (γ = 73 mJ/m2) for droplets of radius 1000, 100, 10 Å. 

For 100 Å the increase is 10%, and if r = 10 Å, it increases by a factor 2.7!  That is why 

condensation will not occur even if equilibrium dictates it should (supercooling).  This is 

the problem of nucleation. 

 

Nucleation 



Let’s consider now the energy cost of nucleating a drop (or bubble) out of 

equilibrium, (μ1 ≠ μ2). The free energy will increase by the 

amount: 
ΔF 

ΔF = ΔΩ + ΔμN = γA + (μ1 - μ2)N = 4πr2γ + (μ1 - 

μ2)4/3πr3/vliq 

If μ1 > μ2, then of course no condensation can occur.  If the 

vapor is supersaturated, then μ1 < μ2, and the cubic term is 

negative.  The graph looks like the one in the figure. 

A density fluctuation must generate a nucleus of radius larger than rc to nucleate a 

drop.  Differentiating we find: 

rc = 2γvliq/(μ2 - μ1) 

and the barrier calculated from this is:  ΔF = 4/3.πr2γ 

 

Exercise: Calculate rc for water (γ = 73 mJ/m2) if ΔF = kTRT = 4.1x10-21 J.  What can we 

conclude from the applicability of the theory? 

The result is rc = 1 Å !!!.  This shows that one cannot push too much the calculations 

using continuum mechanics concepts, like a spherical form etc.   

 

Equilibrium shape of crystals: Wulf’s theorem 

 Unlike in the liquid materials we have been

ace 

to be 

 studying till now, the surface tension 

of crystalline solid materials, depend on the 

atomic arrangement at the surface, which 

depends on the orientation, i.e., on the surf

Miller indices (to be described later).  For that 

reason the equilibrium shape of a crystal as it 

solidifies from a liquid drop, changes from 

spherical to polyhedral. Intuitively one 

expects low surface tension orientations 

predominant.  This will undoubtedly include 

the most compact surfaces, i.e., with low 

rc r
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Miller index, since there the number of broken bonds is minimal. The first treatment of 

the problem was by Wulf in 1901. Here is his theorem: 

 Consider a crystal polyhedron (broken lines in the figure) delimited by surfaces 

i, in e

 

tant 

A quilibrium with its vapor. These surfaces are at a distance hI from the center C. 

Large surfaces are closer to the center than smaller ones, as shown in the figure.  

 In equilibrium we must have:  δΩ = -psδVs -pvδVv + Σi γi δAi = 0 

The conditions are:  total volume constant:  V = Vs +Vv 

   same chemical potential: μs = μv 

   uniform temperature:  T = cons

The crystal volume is:  Vs = Σi 
3
1 Aihi   so that δVs = 

3
1 Σi [hi δAi + Ai δhi] 

From the figure we see also that  δVs,i  =  Ai δhi = 
3
1 (hi δAi + Ai δhi) = 

2
1 (hi δAi).  

Substituting into , with δVs = - Vv, we get finally δΩ δ

Σi {
2
1 (-ps +pv)hi +γi) δAi = 0 

This should be true for any value of Ai (they are independent variables). Therefore, 

This is Wulff’s theorem. It implies th  facets exposed by the crystal can 

ed 

s 

nstruction in the 

previous figure shows flat surfaces delimitin  the cr  

The shape of γ(n) changes from spherical, when the crystal is liquid (melted) to 

one with cusps at the positions of the most stable surfaces, which are the low Miller 

δ

γi / hi = constant 

at the areas of the

be obtained by tracing radii in the appropriate direction with a length proportional to γi 

and a plane perpendicular to the radius 

vector. The minimal polyhedron delimit

by the intersection of the innermost planes i

the equilibrium shape. 

 Although the co

g ystal polyhedron, it is not obvious

that the flat facet under a sharp cusp (a low Miller index plane) should be delimited by 

other flat facets, as indicated in the drawing. In fact the envelope of tangents can be 

curved. 

 

 



index planes.  In these surfaces the atoms lose the 

least amount of bonds by the truncation of the 

crystal. For example, in an fcc or hcp crystal, the 

coordination goes from 12 in the bulk to 9 in the 

(111) surface, and to 8 in the (100) surfaces.  The 

formation of singularities or cusps is due to the 

discrete nature of matter, so that when the 

orientation changes steps are formed. The 

interaction between steps determines the nature of 

the cusp. If Es is the energy per unit length step, and 

if θ is the angle away from the singular surface, the

density of steps is 1/a.tan(θ), where a is the step 

height. The extra surface energy per u. area (γ) is 

then: 

γ = Es.1/a. |θ|  (for small θ’s).   

So tha

low-index surfaceslow-index surfaces

 

t: 

 γ(θ)

esents a cone in a γ(θ) plot. The cone 

 the value of Es 

tep 

 THE STABILITY OF 

TRUCTURE OF CRYSTAL SURFACES.  [See 

urse] 

 = γ(0) + Es.1/a. |θ|  

This repr

needs not be symmetric because

might be different for θ>0 than for θ<0 as the s

orientation changes. 

 

Advanced topic:  ON
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N. Cabrera paper or my notes in Surf. Sci. Co
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